Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Nevzat Karadayı, ${ }^{\text {a }}$ Çiğdem

 Albayrak, ${ }^{\mathbf{b}}$ Mustafa Odabaşoğlu ${ }^{\text {b }}$and Orhan Büyükgüngör ${ }^{\mathbf{c} *}$
${ }^{\text {a }}$ Industrial Electronics Programme, Samsun Vocational School, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, ${ }^{\text {b }}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and ${ }^{\text {c }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey

Correspondence e-mail: nevzatk@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.038$
$w R$ factor $=0.059$
Data-to-parameter ratio $=14.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(E)-2-Hydroxy-3-methoxy-5-[(4-propylphenyl)diazenyl]benzaldehyde

In the title compound, $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$, the azobenzene unit has a trans configuration, and the two benzene rings are inclined with respect to each other by $5.9(2)^{\circ}$. Molecules are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a linear chain along [101] .

Comment

Azo compounds have attracted great interest in organic synthesis. In the class of dye molecules, azo compounds are an important type of organic colorants and consist of at least a conjugated chromophore azo group and two or more aromatic rings. The colour of an azo dye is mainly due to the interaction of the azo group with incident light. Azo dyes are widely used in textiles, printing, cosmetics, drugs, food colouring and other consumer goods (Russ \& Tappe, 1994; Tsuda et al., 2000). We report here the structure of the title compound, (I).

(I)

The molecular structure of (I) is shown in Fig. 1, with the atom-numbering scheme. The benzene rings adopt a trans configuration about the azo functional group. The $A / B, A / C$, C / B and B / D dihedral angles between the planes $A(\mathrm{C} 7-\mathrm{C} 12)$, $B(\mathrm{C} 1-\mathrm{C} 6), C(\mathrm{C} 1 / \mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 7)$ and $D(\mathrm{C} 15-\mathrm{C} 18)$ are $5.9(2)$, 11.0 (3), 5.3 (3) and 65.5 (2) ${ }^{\circ}$, respectively.

All the $\mathrm{C}-\mathrm{C}$ bond lengths in the $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 7-\mathrm{C} 12$ benzene rings have typical $\mathrm{Csp}{ }^{2}-\mathrm{Csp} p^{2}$ values. The average $\mathrm{C}-\mathrm{C}$ bond lengths within these two rings are 1.375 (3) and 1.385 (3) \AA, respectively. The $\mathrm{N} 1=\mathrm{N} 2$ bond length of $1.250(2) \AA$ is almost equal to those found for similar compounds [1.256 (2) Å (Odabaşoğlu et al., 2003), 1.252 (2) \AA (Karadayı et al., 2006a), and 1.255 (2) \AA (Karadayı et al., 2006b)]. The C9-C13, C10-O3 and $\mathrm{C} 11-\mathrm{O} 4$ bond lengths are 1.460 (3), 1.357 (3) and 1.357 (3) Å, respectively, and these values are comparable with those observed in our previous studies [1.445 (3), 1.350 (2) and 1.356 (2) \AA (Karadayı et al., 2006a), and 1.447 (3), 1.349 (2) and 1.355 (2) A (Karadayı et al., 2006b)]. An intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is present in the molecule.

In the crystal structure of (I), intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) generate a chain along [101].

Received 26 July 2006 Accepted 30 July 2006

Experimental

Compound (I) was prepared according to the literature method of Odabaşoğlu et al. (2003), using 4-n-butylaniline and o-vanillin as starting materials. Suitable single crystals of (I) were obtained by slow evaporation of an acetic acid solution (yield 87%; m.p. 367-369 K).

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$	$Z=4$
$M_{r}=312.36$	$D_{x}=1.234 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / n$	Mo $K \alpha$ radiation
$a=4.6264(10) \AA$	$\mu=0.09 \mathrm{~mm}^{-1}$
$b=35.911(7) \AA$	$T=296(2) \mathrm{K}$
$c=10.342(2) \AA$	Plate, brown
$\beta=101.974(16)^{\circ}$	$0.37 \times 0.29 \times 0.07 \mathrm{~mm}$
$V=1680.9(6) \AA^{3}$	

Data collection

Stoe IPDS-2 diffractometer

 ω scansAbsorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.972, T_{\text {max }}=0.989$
10696 measured reflections 2983 independent reflections 831 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.079$
$\theta_{\text {max }}=25.0^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0064 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.11 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.15 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \quad \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.0047 \text { (5) }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\left(\mathrm{A},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3 \cdots O4	0.82	2.19	$2.646(2)$	115
O3-H3 $\cdots 2^{\mathrm{i}}$	0.82	1.95	$2.685(2)$	148

Symmetry code: (i) $x-\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$.
H atoms were positioned geometrically and refined using a riding model, with $\mathrm{O}-\mathrm{H}=0.82 \AA, \mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$ for methyl and hydroxyl H atoms and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for

Figure 1
A view of (I), showing the atomic numbering scheme and 50% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line.
others. A rotating-group model was used for the hydroxyl and methyl groups.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Karadayı, N., Albayrak, Ç., Odabaşoğlu, M. \& Büyükgüngör, O. (2006a). Acta Cryst. E62, o1699-o1701.
Karadayı, N., Albayrak, Ç., Odabaşoğlu, M. \& Büyükgüngör, O. (2006b). Acta Cryst. E62, o1727-o1729.
Odabaşoğlu, M., Albayrak, Ç., Büyükgüngör, O. \& Goesmann, H. (2003). Acta Cryst. C59, o234-o236.
Russ, H. W. \& Tappe, H. (1994). Eur. Pat. Appl. EP 629627.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Tsuda, S., Matsusaka, N., Madarame, H., Ueno, S., Susa, N., Ishida, K., Kawamura, N., Sekihashi, K. \& Sasaki, Y. E. (2000). Mutat. Res. Genet. Toxicol. Environ. Mutagenesis, 465, 11-26.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

